Architecturefor the Interoperability among Ubiquitous
Components

Anabel Pineda!, Rolando Menchaca? and Giovanni Guzman®

! _ Computing and Systems Department
Matamoros Institute of Technology, Matamoros, Mexico
apineda@itmatamoros.edu.mx
23 _ Centrefor Computer Research, National Polytechnical Intitute, Mexico City, Mexico
{rmen, jguzmanl} @cic.ipn.mx

Abstract. Implementing spontaneous interoperability among nomadic
components is currently one of the most relevant open problems in ubiquitous
computing. There are three main issues related with achieving spontaneous
interoperability, namely, initialization, discovery and interaction among
components. In this work we present a novel architecture which is based on
ontologies and peer-to-peer agorithms that solve these three aspects in an
integrated way. The architecture is composed of a set of services implemented
using JXTA and an ontology-based inference engine. Using our infrastructure,
clients (mobile or static) are able to perform semantic and geographic-aware
queries to the ubiquitous environment and dynamically find instances of a
desired service. We also present a couple of applications that were devel oped
using our proposed architecture. These applications alow us to show the
potentia of our infrastructure to implement two classic ubiquitous computing
scenarios, both using mobile devices and heterogeneous wirel ess networks.

1 Introduction

Ubiquitous Computing, also known as Ubicom, is a relatively new paradigm first
defined by Mark Weiser that describes a class of computing systems whose main goal
isto improve the quality of life of human users by means of a seamless integration of
hardware and software components into people’'s everyday activities. The services
provided by these systems are ubiquitous in the sense that they can be provided by
almost any everyday object, moreover, ubiquitous hardware and software components
tend to disappear into the environment and the user only perceives their advantages
while the complexity is hidden as much as possible [1]. The enormous potential of
this new paradigm has attracted the attention of an increasing community of
researchers who are working to materialize the seminal ideas of Mark Weiser [1].
There are many research areas directly related with the ubiquitous computing, for
instance, software engineering, human-computer interaction, semantic computing,
computer networks, natural language and others. In this work we focus on defining
new software architecture that foster the constructions of ubiquitous systems by
providing a set of fundamental services that have been identified as useful and
desirable for aimost any ubiquitous system.

A. Gelbukh, S. Suarez, H. Calvo (Eds.) Received 02/07/07
Advances in Computer Science and Engineering Accepted 21/10/07
Research in Copmuting Science 29, 2007, pp. 211-224 Final version 25/10/07

212 Anabel Pineda, Rolando Menchaca, Giovanni Guzman

To be more precise, a ubiquitous system isin essence a saturated environment with
computing and communication components that are integrated with the everyday
tasks of their human users [2]. The Ubicom community has identified two
fundamental characteristics of a ubiquitous system: they are physically integrated into
everyday objects and their components have to be capable of interacting with other
ubiquitous components without need of manual re-configurations. Here, we go one
step further of the second characteristic by designing and implementing a novel
software architecture that solves the three main issues related with achieving
spontaneous interoperability. To solve these three problems we developed a set of
protocols that enable heterogeneous components to dynamically recognize other and
interact among them. The computer networks that provide communication support to
the ubiquitous systems have to be heterogeneous and alow the interoperability of
wired, infrastructure-based wireless and ad hoc networks. Moreover, these networks
have to be highly dynamic and support continuous arrival and departure of new
components without need of explicit re-configurations [3]. To cope with these
requirements we employ a peer-to-peer (P2P) software architecture. P2P systems are
highly dynamic, composed of a set of independent software elements with equivalent
functionality and they do not require centralized management. These characteristics
endow to P2P systems with properties such as scalability, flexibility [4], fault
tolerance and afairly simple management [5] that can be quite useful when designing
an infrastructure for the development of ubiquitous systems in general and in
particular for the infrastructure proposed in this work.

Nowadays, there are severa P2P systems available, for example Gnutella and
Napster. However, most of these systems are designed for specific application, such
as file sharing. Therefore, our software architecture uses the P2P infrastructure of
JXTA in order to enable services among peers which may be hidden behind NAT,
firewalls, to dynamically join and leave the P2P network, with the possibility of
changing their locations. This is the genera purpose for which the infrastructure
JXTA was designed, to provide interoperability, platform independence and ubiquity.
Inside the existent P2P infrastructures, JXTA is the one that fulfills most of the
characteristics that our architecture needs.

Although JXTA provides the ideal characteristics to our architecture, it does not
currently provide an adequate solution to the discovery service problem because is not
enough to provide a basic advertisement-search mechanism. JXTA needs a flexible
discovery service system to enable to locate al available services conforming to a
particular functionality.

The rest of document is organized as follows: Section 2 presents a short
introduction and the main characteristics of current discovery service protocols; in
Section 3 we respond to the question why JXTA?; Section 4 describes the need to
extend JXTA discovery service, Section 5 describes a novel architecture solution
(ArCU) —integrating a set of services using JXTA with ontology-based inference
engine— and the implementation of USE (Ubiquitous Services Environment). Finally
Section 7 presents the conclusions of present work.

Architecture for the Interoperability among Ubiquitous Components 213

2 Discovery Service Protocols

There are recent solutions related with the integration of peer-to-peer (P2P)
infrastructure and ontologies to discovery services [19][20]. These proposals are
focused in offer precision in the discovery of services with wished functionalities.
Currently, there are many protocols that provide a solution for discovery service, one
of the most important requirements to reach spontaneous interoperability. Next, we
present a short introduction and the main characteristics of them. Especially, we will
focus in the discovery service because it is the most relevant for our proposal.

2.1 Universal Plug and Play (UPnP)

Universal Plug and Play is a technology developed in the UPnP Forum [6] for
automatically configuring devices, discovering services and providing P2P data
transfer over an |P network. UPnP technology is built upon IP, TCP, UDP, HTTP and
XML, among others. The UPnP discovery protocol is based on the Simple Service
Discovery Protocol (SSDP). The discovery process of UPnP based in SSDP is as
follow: given an IP address, when a device is added to the network, the UPnP
discovery protocol allows the device to advertise its services to control points on the
network. Similarly, when a control point is added to the network, the UPnP discovery
protocol alows that control point to search for devices of interest on the network. In
both cases, the fundamental exchange is a discovery message containing a short
essential description about the device or its services, i.e,, its type, unique identifier,
and an URL to obtain more detailed information. The principal limitation of SSDP is
that it does not support the search for multiple types in the same request and attribute-
based search [7].

2.2 Service Location Protocol (SLP)

Originaly, the Service Location Protocol (SLP) [8] was proposed as an Internet
Engineering Task Force (IETF) standard track protocol, to provides a framework to
allow networking applications to discover the existence, location, and configuration
of networked resources in networked resources, such as devices and services. SLP
eliminates the need for a user to know the name of a network host that supports a
service. Rather, the user supplies the service name and a set of attributes, which
describes the resource.

The resources are modeled as clients that need to find servers attached to the
enterprise network at a possibly distant location. For cases where there are many
different clients and/or available resources, the protocol is adapted to make use of
nearby Directory Agents that offer a centralized repository for advertised services.The
basic operation in SLP is that a client attempts to discover the location for a resource.
In small installations, each resource is configured to respond individually to each
client. In larger installations, resource will register their services with one or more

214 Anabel Pineda, Rolando Menchaca, Giovanni Guzman

directory agents and clients contact the directory agent to fulfill request for resource
location information. This is intended to be similar to URL specifications and make
user of URL technology. The principa limitations are the ability to reflect SLP's
orientation toward enterprise service discovery and heavyweight directories[8].

2.3 Salutation

The Salutation architecture was developed by the Salutarion Consortium, to solve the
problems of discovery service and utilization among a broad set of appliances and
equipment in a wide-area or mobile environment [9]. The Salutation architecture is
composed of two elements. Salutation Lookup Manager (SLM) and Transport
Manager. The SLM functions as a service broker for services in the network. The
SLM can classify the services based on their meaningful functionality, called
Functional Units (FU). The services are discovery by SLM by means of a comparison
of the requerid service types with the types stored in the SLM directory. The
discovery service process can be performed across multiple Salutation Lookup
Managers, where one SLM represent its client while communicating with another
SML to discover services[10].

2.4 Bluetooth

Bluetooth is a radio standard and communications protocol designed for low power
consumption, with short-range radio frecuency [11]. Bluetooth defines its own
protocol stack, including a service-discovery protocol, SDP. This protocol is based on
unique identification numbers (UUIDs), with several predefined services such as
phones, printers, modems, and headsets. The Bluetooth specifications are developed
and licensed by the Bluetooth Special Interest Group.

Bluetooth communication is P2P, so it does not assume a fixed network
infrastructure. Thus, discoverability is based on actual physical proximity rather than
closeness in the IP routing infrastructure. In that sense, in comparison to the rest of
the services discoveries, it simplifies the discovery and setup services. A Bluetooth
device advertise al its services, making them more accessible, without the need to
worry about network addresses, permissions and all other considerations related with
typical networks.

2.5 Jini

Jini is a distributed service-oriented architecture developed by Sun Microsystems
[12]. Jini is a simple insfrastructure for providing services in a network, and for
creating spontaneous interactions between theses services. Services can join or leave
the network in a robust fashion, and clients can rely upon the availability of visible
services, or at least upon clear failure conditions [13].The service advertisement takes
the form of interface descriptions. This simple form of the advertisement mechanism
can be easily employed to provide high-level abstraction both for software and

Architecture for the Interoperability among Ubiquitous Components 215

hardware entities in the network. Jini discovery insfrastructure provides a good base
foundation for developing a system with components distributed in the network that
need to discover each other. However, the Jini discovery process istightly bound with
the simple interface description advertisement. This leads in a loss of expressive
power in the component description. For example, Jini discovery and lookup
protocols are suficient for service clients to find a print service. However, they are not
suficient for clients to find a print service through their geographical localization or
particular functionality such as color laser printer service. Thisis a limitant because
can create problems in a mobile environment. Furthermore, the simplicity of the Jini
architecture also leads to the cross-domain service interoperablity problem.

2.6 IXTA

JXTA (short for “juxtapose”) is a set of open protocolos that facilities Peer-to-Peer
communication. This technology allows connecting a wide variety of devices that
they can be anything with an electronic hearbeat [14]. JXTA is based upon a set of
open XML protocols, this way alow exchange messages and collaborate
independenlty of programming language, platform or network transport.

In JXTA the peers are organized in peergroups to represent types of services,
location, etc. All network resources in JXTA such as peers, peergroups, pipes and
services are represented by advertisements that are XML documents that announce
the existence and some properties of these resources. Every Advertisement in JXTA
has a string Name Field. For the search, JXTA Advertisement usually uses their name
to indicate the type of service the peers provide. Advertisements provide a uniform
way to publish and discover network resources and they have a lifetime to specify the
lifetime of its associate resource.

The general purpose of JXTA is providing interoperability across verying P2P
systems and communities, platform independence to support diverse languages,
systems and networks, and ubiquity, in which every device has a digital heartbeat.

3Why JXTA?

JXTA provides three aspects that the rest of the services previously mentioned
individually they do not provide.

- The JXTA infrastructure adopt P2P systems characteristics: highly dynamics, set
of independent software elements with equivalent functionality and decentralized
management. These characteristics endow to JXTA with properties such as
scalability, flexibility, fault tolerance and afairly simple management.

- JXTA infrastructure provide interoperability, platform independence and
ubiquity, and

- The opportunities for extending JXTA are manifold because its support arbitrary
XML so it can integrate emerging standards (such as the Ontology Web
Language [OWL] for description) as arelevant approach for refining searches.

216 Anabel Pineda, Rolando Menchaca, Giovanni Guzman

These characteristics are necessary for the development of ubiquitous systems and
for that reason we decide to use JXTA infrastructure.

4 Extending JXTA Discovery Service

In the introduction, we have mentioned that although JXTA provides the idea
characteristics to our architecture, it does not currently provide an adequate solution
to the discovery service problem, because is not sufficient to provide a basic
advertisement-search mechanism. JXTA needs a flexible discovery service system to
enableto locate all available services conforming to a particular functionality. For that
reason, we intend to integrate peer-to-peer algorithms and ontologies as alternative to
approach to refined search.

Ontology in computer science is usually defined as an explicit specification of a
conceptualization of a domain [15]. But, why is it important to use ontologies? We
can use ontologies to describe a shared conceptualization of domain of services,
devices and other concepts that could influence the discovery service process, such as
different kinds of context [16], for example, in a particular case, geographical
localization of a printer.

The following section will discuss discovery service enabling ontologies, as our
architecture integrates such ontologies with JXTA, and which is the procedure to
discovery service.

5 Architecture

In this section we present the design of ubiquitous computing architecture (ArCU) as
well as a description of each of its components. We emphasize on the P2P nature of
our architecture that is achieved by using JXTA [14] as our communication
infrastructure. We aso discuss how our ontology-based descriptions and inferences
provide extra benefits to ArCU. As one of the most evident benefits of using JXTA is
the fact that the JXTA’s protocols implement a virtual overlay network that hides all
the details about the particular instantiation of the physical communication network.
In this way, our components or peers are able to interact with other components not
regarding the type of communication network (wired, behind a firewal,
infrastructure-based wireless) they are using [14]. Asit is shown in Fig. 1, ArCU is
composed by the following elements. One or more Clients (ArCU-MC) that can be
mobile or static, one or more Ubiquitous Services (ArCU-US) and at least one Basic
Inference Service (ArCU-BIS).

5.1.1. Mobile Clients (ArCU-MCs)
Using Clients or Mobile Clients, users are able to find and interact with the

Ubiquitous Services provided by the environment. The ubiquitous services are
discovered by means of queries that are issued to the Basic Inference Service (ArCU-

Architecture for the Interoperability among Ubiquitous Components 217

g Ry S—ECE
% 1 FEER
& O
= E. d ﬁ-
E 1.m
g Pipe Abstraction
E P2P-Pipe
1 | —
=

TCPIIP, Ethernet, Bluetooh, WLAN

Fig. 1 ArCU Architecture.

BIS). Every Ubiquitous Service publishes a set of device-independent user interfaces
(codified in XML) that can be analyzed and displayed by the ArCU-MCs. Every
ArCU-MC displays the interfaces in the way that best fits its hardware capabilities.
The flexibility provided by the device-independent definition is very important
because a very wide range of devices may act as ArCU-MCs and some of them (i.e.
cellular phones) may have restricted displaying capabilities.

On the other hand, small devices such as cellular phones or PDAs commonly have
restrictions on their storage and computing capabilities and they may experience
continuous disconnections due to mobility or lack of battery power. To cope with all
these restrictions imposed by the nature of the hardware devices employed in
ubiquitous systems we use the JXTA version for mobile devices, namely, IXME [14].

5.1.2. Ubiquitous Services (ArCU-US)

The Ubiquitous Services (ArCU-USs) are services viewed as functional components.
That functionality is typically implemented as software components, some services
specifically support, or are offered by devices (hardware components) where they
characteristics and capabilities may play arole in the description and behavior of the
services it offers. Examples of Ubiquitous Services: a projector, a printer, a public
display, databases, software presentation and so on. The ArCU-USs employs JXTA
announcements to publish their services in the environment. These announcements
include semantic descriptions codified in OWL [17] about the services they offer.

218 Anabel Pineda, Rolando Menchaca, Giovanni Guzman

5.1.3. Basic Inference Service (ArCU-BIS)

The Basic Inference Service (ArCU-BIYS) is the most important component of ArCU.
This component is subdivided in three elements: Communications Administration
Service, Ontology Administrator and Search Engine.

The Communication Administration Service is in charge of the establishment and
maintenance of the communication channels. The Communication Administration
Service employs JXTA pipes as its communication abstraction. The JXTA pipes
provide a virtual pipe that is able to communicate peers that do not have a direct
physical link, or in other words, that reside in different types of networks or behind
different firewalls. The endpoints of the pipes are dynamicaly linked (at run-time) to
the endpoints of the peers and hence, peers are able to move from one domain to
another in a transparent way. Moreover, using the pipe abstraction, our services can
transparently recuperate from failures in any of the physical endpoints. This way, the
Communication Administration Service is able to hide the fact that some devices may
be mobile and change from one network to another.

The Ontology Administrator has the responsibility of creating and managing a
dynamic ontology. That means? For example, a scenario isillustrated in the Fig. 2(a)
with three available services. If 15 minutes later a service leave the environment such
as show the Fig. 2(b).The Ontology Administrator has to refresh in no more of 5
minutes the ontology state as can be seen in the Fig. 2(c), al thisin order to maintain
the ontology as small as possible to help reduce the time and space complexity of the
semantic searches. The Fig. 3 illustrates a section of a device ontology proposed by
[18]. To thiswork, we adopt the use of this device ontology because helps to describe
devices and their services in a rich and expressive way to facility a semantic
discovery of services.

Finally, the Search Engineisin charge of performing the semantic and geographic-
context-aware searches that are issued by the clients of the ubiquitous environment.
As aresult of these searches, Search Engine returns references to the services that
meet the criteria specified by the clients. These references are further used by the
clients to access the services.

5.1.4 ArCU Communication I nfrastructure

ArCU builds on the basic advertisement-search IJXTA mechanism. We purpose three
important additons that peers providing services using ArCU must implement:

1. Pointer to XML document specify to graphic description of interfaces.

2. Pointer to OWL file that describe the service.

3. A XML Service Advertisement with need information to publish and invoke
the documents previously mentioned. Asit is shown in Fig. 4.

The OWL Web Ontology Language [17] is designed for use by applications that
need to process the content of information instead of just presenting information to
humans. OWL facilities the interpretability of content than that supported by XML,
RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a
formal semantics.

Architecture for the Interoperability among Ubiquitous Components 219

Ontology | Device Ontology | Device | Ontology | Device
[Printer] [Projector] [Printer] [Projector] [Printer] @ﬂ]

[SUI\IPrinter] [SIPrinter] [S]:Prnjectnr] S [STPrinter] [S]I-'rnjectnr] [STPrinter] [S]I-'rnjectnr]

Ewd |5ewd. s

Bluetooth Bluetooth

Bluetooth (/«' e 2)) Bluetooth (((-t J)) Bluetooth (/«’ e 2))

Laboratory Laboratory

- Fthernet - Ethernet - Ethernet
a) b) c)

Fig. 2 Dynamic Ontology Scenario.

hasDevicaDascrption @ hasSemce
Stalus

softwara
Dewice Stalus
2 Lacation

@ poweDetals
| nqmen.m. [rﬂ"m'

Fig. 3 Device Ontology.

harcware

de\'mel'lamr

Literal

220 Anabel Pineda, Rolando Menchaca, Giovanni Guzman

~
-
(SN — = \
. / N\ /
—— P
¢7< \\ S
— A
//' A_ L _,/
/ N
Service Advertisement
<name:
HP-Printer
</name>

<interface>
interface. xml
</interface>

<owlpescription>
interfacedescription. xml
</owlDescription>

Fig. 4 A service advertisement in ArCU.

In the case of our architecture that ArCU-BIS peer wish to matches a set of
searching criteria a service need retrieve OWL file that describe the service. This
remote communication is kept as previously mentioned by usign JXTA pipes as
mechanism for exchanging messages between services. These messages in JXTA are
also based in XML format, standarized by W3C same as OWL [17].

JXTA and OWL uses XML, the integration of both was straightforward since it
doesn't commit to some standard of communication.

5.1.5 ArCU Discovery Service Mechanism

To explain the ArCU Discovery Service Mechanism is necessary describes the

interactions among ArCU components for to publish and discover services. As we

previously mentioned, the communication among the components of ArCU is carried

out using standard JXTA protocols. A typical communication sequence is shown in

Fig. 5.

1. The ArCU-BIS publishes its announcement in the distributed hash table
implemented by a special-type peer known as rendezvous peer.

2. The ArCU-US peer aso publishes its announcement in the distributed hash table
implemented by a rendezvous peer (it may or may not be the same peer asin the

step 1).

10.

11.
12.

13.
14.

Architecture for the Interoperability among Ubiquitous Components 221

In order to make invocations over the services implemented by the ArCU-BIS, an
ArCU-US has to find the announcement of an ArCU-BIS peer. In JXTA the
management of the advertisements is carried out by the rendezvous peers who
implement the distributed hash table.

Upon receiving a query, the rendezvous peer looks for an index of the
announcement in the distributed hash table. If it finds the index, the rendezvous
peer relies the query to the peer that published the announcement (in this case the
ArCU-BIS). When the ArCU-BIS receives the query, it replies with its
advertisement that is further received by the ArCU-US.

With the advertisement, the ArCU-US acquires the capability of invoking the
services provided by the ArCU-BIS. In thisway, the ArCU-US is able to record it
servicesin the database of the ArCU-BIS.

The ArCU-MCs are implemented by a special type of peer that is called edge
peer. These peers need to be coupled with another specia type of peer that is
called relay peer. So, in order to access the services of the ubiquitous
environment, every ArCU-MC has to establish communication with arelay peer.
The functionality of a pair edge-relay peer is equivalent to the one of a regular
JXTA peer. When the ArCU-MC is connected to arelay peer, it sends a query to
arendezvous peer looking for the announcement of an ArCU-BI S peer.

The rendezvous peer looks in the distributed hash table for the index of the
announcement. If it finds the index, the rendezvous peer relies the query to the
peer that published the announcement (in this case the ArCU-BIS).

When the ArCU-BIS receives the query, it replies with its advertisement that is
further received by the ArCU-MC.

The ArCU-MC can now issue regquests to the ArCU-BIS looking for a service
that matches a set of searching criteria.

When the ArCU-BI S finds the service it replies with the service' s advertisement.
Now, the ArCU-MC is able to send a request to the ArCU-US asking for its
device-independent graphic interface.

Finally, the user can employ thisinterface to interact with the ubiquitous service.
It isimportant to insist that the graphic interface is described in XML document
that is analyzed by the client device and then displayed according to its hardware
capabilities.

FEER
ﬁ;ﬂ () ; ER (2)
RELAY ROV

(3)
tm '[91'1 (1)
EER 5 EER

(4
(11)(12
rcu-mc rCu-BIS rcu-us

1..H (10) (6) 1.H

[14]1 ‘ (13)

Fig. 5 Interaction among components in our ubiquitous computing platform.

222 Anabel Pineda, Rolando Menchaca, Giovanni Guzman

5.1.6 Prototype

In order to materialize the architecture proposed we have been developed USE. USE
is a Ubiquitous Services Environment. Into USE we implemented two classics
ubiquitous computing scenarios, both using mobile devices and heterogeneous
networks. In this section, only we illustrate one scenario. Fig. 6 show images of the
graphics interfaces used in the print service scenario described below.

Fig. 6 Print service graphics interfacesin USE.

Scenario: Rolando is a researcher in the area of ubiquitous computing and he is
currently attending a meeting in the main conference room of an important research
center. Later, he will be presenting some of his latest results in the same room and he
needs to make some printouts to distribute them among his colleagues. To do so,
Rolando uses one of the ubiquitous services provided by the conference room.
Despite the fact that this is the first time that Rolando visits this particular research
center, heis able to use his PDA to look for a public printer that is also located in the
main conference room. As aresult, the PDA gets alist of printing services that meet
the criteria specified by Rolando. Once Roland selects the desired service, the PDA
gets the graphic interface of the selected service. Finally, Rolando uses the interface
to select the file to be printed and to send the job to the printer.

We have experimentally confirmed the functionality with real devices. Particularly
we use a Sony Clié PEG-UX50 Handheld with PALM OS 5.2 with WiF and
Bluetooth technologies. With this experiment, we were able to test the potential of our
infrastructure.

Architecture for the Interoperability among Ubiquitous Components 223

6 Conclusions

In this paper we presented a software architecture that allows clients (fixed or mobile)
to perform semantic and geographic-context-aware searches over the services and
resources contained in a ubiquitous environment. Our architecture employs a
distributed hash table that works in conjunction with a set of inferences processes that
are based on ontologies. In our proposal, the ubiquitous environment acts a dynamic
repository that contains the ontologies that describe the services available in the
environment in a given point in time. To make or architecture scalable, the algorithms
employed to implement the repository were designed with the objective of reducing
as much as possible the time and space complexity involved in the semantic searches.
The communication among components is carried out using the standard JXTA
protocols which is based on the interchange of XML documents. In the same way, the
user interfaces are specified using XML documents, and each client is free to display
those interfaces in the way that best matches its hardware and software capabilities.
These last two design choices allow us to implement heterogeneous systems that can
be composed of awide variety of (off the shelf) hardware and software platforms.

Acknowledgments

The authors of this paper wish to thank the CIC, SIP, CONACYT, IPN and ITM for
their support. Additionally, the authors wish to thank the reviewers for their pertinent
comments.

References

1. Waeiser, M., “The Computer for the 21st Century”, Scientific American, Vol. 265, No. 3,
September 2001, pp. 94-104.

2. Satyanarayanan, M., “A Catalyst for Mobile and Ubiquitous Computing”, IEEE Pervasive
Computing, Vol. 1, No. 1, January - March 2002.

3. Menchaca, R. and Favela, J., “Arquitecturas P2P para €l Desarrollo de Sistemas Mévilesy
Ubicuos’, Septiembre 2003.

4. Balakrishnan, H., Kaashoek, F., Karger, D., Morris, R. and Stoica, |., “Looking Up Datain
P2P Systems’, Comunications of the ACM, Vol. 46, No. 2, February 2003, pp. 43-48.

5. Kubiatowicz, J. M., “Extracting Guarantees from Chaos’, Comunications of ACM, Vol.
46, No. 2, February 2003, pp. 33-38.

6. Universal Plug and Play. www.upnp.org.

7. Guttman, E., “Service Location Protocol: Automatic Discovery of IP Network Services’,
IEEE Internet Computing, VVol. 3, No. 4, August 1999, pp. 71-80.

8. Edwards, W. K., “Discovery Systems in Ubiquitous Computing”, |EEE Pervasive
Computing, Vol. 5. No. 2, April 2006, pp. 70-77.

9. Salutarion Arquitecture Specification, v. 2.1, Salutation Consortium, 1999.

10. Chakraborty, D., Perich, F., Avancha, S. and Joshi, A., “DReggie: Semantic Service
Discovery for M-Commerce Applications’, in Workshop on Relisble and Secure
Applications in Mobile Environment, Symposium on Reliable Distributed Systems,
October 2001.

11. Specification of the Bluetooth System, v.1.1 core, Bluetooth Consortium, 2001,
http://bluetooth.com.

224 Anabel Pineda, Rolando Menchaca, Giovanni Guzman

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

Waldo, J., The Jini Specifications, edited by Ken Arnold. Addison-Wesley Professional,
Second edition. December 15, 2000.

Arnold, K., Wollrath, A., O'Sullivan, A., Scheifler, R. and Waldo, J, The Jini
Specifications. Addison-Wesley, Reading, MA, USA, 1999.

Proyect JXTA 2.0 Super-Peer Virtual Network.

http://www .jxta.org/project/www/docs/IX TA2.0protocol s1.pdf .

Gruber T. “Toward Principles forthe Design of Ontologies Used for Knowledge Sharing”.
Technical Report KSL-93-04, Knowledge Systems Laboratory, Stanford University, CA,
1993.

Schmidt, A., “Ubiquitous Computing—Computing in Context”, Submitted for the degree
of Doctor of Philosophy, Lancaster University, England, U.K. November 2002.
http://www.comp.lancs.ac.uk/~al brecht/pubg/.

OWL Web Ontology Language: Overview. http://www.w3.0org/TR/owl-features/

Bandara, A., Payne, T., De Roure, D. and Clemo, G., “An Ontological Framework for
Semantic Description of Devices’, the 3rd International Semantic Web Conference, Japan,
November 2004.

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S. and Miller,
J.,”"METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Publication
and Discovery of Web Services', Journa of Information Technology and Management,
under review.

Paolucci, M., Sycara, K., Nishimura, T. and Srinivasan, N., “Using DAML-S for P2P
Discovery", in Proceedings of the International Conference on Web Services, 2003.

